Classical and overconvergent modular forms

نویسنده

  • Robert F. Coleman
چکیده

The purpose of this article is to use rigid analysis to clarify the relation between classical modular forms and Katz’s overconvergent forms. In particular, we prove a conjecture of F. Gouvêa [G, Conj. 3] which asserts that every overconvergent p-adic modular form of sufficiently small slope is classical. More precisely, let p > 3 be a prime, K a complete subfield of Cp, N be a positive integer such that (N, p) = 1 and k an integer. Katz [K-pMF] has defined the spaceMk(Γ1(N)) of overconvergent p-adic modular forms of level Γ1(N) and weight k over K (see §2) and there is a natural map from weight k modular forms of level Γ1(Np) with trivial character at p to Mk(Γ1(N)). We will call these modular forms classical modular forms. In addition, there is an operator U on these forms (see [G-ApM, Chapt. II §3]) such that if F is an overconvergent modular form with q-expansion F (q) = ∑ n≥0 anq n then UF (q) = ∑

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P -adic Family of Half-integral Weight Modular Forms via Overconvergent Shintani Lifting

The classical Shintani map (see [Shn]) is the Hecke-equivariant map from the space of cusp forms of integral weight to the space of cusp forms of half-integral weight. In this paper, we will construct a Hecke-equivariant overconvergent Shintani lifting which interpolates the classical Shintani lifting p-adically, following the idea of G. Stevens in [St1]. In consequence, we get a formal q-expan...

متن کامل

THE HALF-INTEGRAL WEIGHT EIGENCURVE by

— In this paper we define Banach spaces of overconvergent half-integral weight p-adic modular forms and Banach modules of families of overconvergent halfintegral weight p-adic modular forms over admissible open subsets of weight space. Both spaces are equipped with a continuous Hecke action for which Up2 is moreover compact. The modules of families of forms are used to construct an eigencurve p...

متن کامل

P-adic Family of Half-integral Weight Modular Forms and Overconvergent Shintani Lifting

Abstract. The goal of this paper is to construct the p-adic analytic family of overconvergent half-integral weight modular forms using Hecke-equivariant overconvergent Shintani lifting. The classical Shintani map(see [Shn]) is the Hecke-equivariant map from the space of cusp forms of integral weight to the space of cusp forms of half-integral weight. Glenn Stevens proved in [St1] that there is ...

متن کامل

ar X iv : 0 90 6 . 32 49 v 1 [ m at h . N T ] 1 7 Ju n 20 09 THE HALF - INTEGRAL WEIGHT EIGENCURVE

— In this paper we define Banach spaces of overconvergent half-integral weight p-adic modular forms and Banach modules of families of overconvergent halfintegral weight p-adic modular forms over admissible open subsets of weight space. Both spaces are equipped with a continuous Hecke action for which U p2 is moreover compact. The modules of families of forms are used to construct an eigencurve ...

متن کامل

A theta operator on Picard modular forms modulo an inert prime

(an 2 1 Fp) of such a form, μ is given by qd=dq: It lifts, by the same formula, to the space of p-adic modular forms. This suggests a relation with the Tate twist of the mod p Galois representation attached to f; if the latter is a Hecke eigenform. Over C; this operator has been considered already by Ramanujan, where it fails to preserve modularity “by a multiple of E2": Maass modi...ed it so t...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004